V2. Potrebno je napraviti simulaciju skoka kojeg izvodi Subaru Impreza (2010) pri brzini od 146 kmh⁻¹.

Koristeći Vensim procijenite kako domet ovisi o kutu nagiba uzletne staze te približno odredite nagib staze potreban za preskočiti 82 m.

1. Pretpostavke

Pojednostavnit ćemo problem: promatramo 2D gibanje, rotacije zanemarujemo, zanemarujemo djelovanjesvih sila osim sile teže i otpora zraka.

2. Koordinatni sustav

Relacije, koje opisuju ovisnost među fizikalnim veličinama, (fizikalni zakoni) ne ovise o izboru koordinatnog sustava pa ga biramo proizvoljno, kako nam je jednostavnije. U ovom slučaju, postavljamo ishodište koordinatnog sustava u točki u kojoj auto napušta uzletnu stazu kao na slici dolje

3. Početni položaj i početna brzina

✓ Početna brzina automobila

$$|\vec{v}_0| = 146 \text{ kmh}^{-1} = 146 \cdot \frac{1000 \text{ m}}{3600 \text{ s}} = \frac{146}{3.6} \text{ ms}^{-1}$$

Sve vektorske veličine rastavljamo na komponente(komponenta negativna ako je usmjerena suprotno osima odabranog koordinatnog sustava). Rastavimo brzinu na komponente.

Excel funkcije SIN(kuta) i COS(kuta) uzimaju kut u radijanima:

$$\alpha^{\text{rad}} = \frac{\alpha^{\circ}}{180^{\circ}} \cdot \pi$$
$$\sin(\text{kut}) = \frac{\text{nasuprotna kateta}}{\text{hipotenuza}}$$
$$\cos(\text{kut}) = \frac{\text{priležeća kateta}}{\text{hipotenuza}}$$

Početni položaj (ovisno o izboru koordinatnog sustava)

$$x_0 = 0 \text{ m}$$
 $y_0 = 0 \text{ m}$

4. Akceleracija i sile koje djeluju na tijelo

✓ Sila teža djeluje na svako tijelo na Zemlji, a ima smjer prema središtu Zemlje te iznosi

$$|\dot{F}_g| = mg$$

gdje je ubrzanje Zemljine sile teže

$$g \approx 9.81 \,\mathrm{ms}^{-2}$$

a masa automobila zajedno s vozačem

 $m \approx 1.5 \text{ t} = 1500 \text{ kg}$

✓ Sila otpora zraka ima smjer suprotan brzini tijela, a iznos proporcionalan kvadratu brzine

$$\vec{F}_{OZ} = -Dv\vec{v} = -Dv \cdot (v_x \hat{\imath} + v_y \hat{\imath})$$
$$\vec{F}_{OZ} = -Dvv_x \cdot \hat{\imath} - Dvv_y \cdot \hat{\jmath}$$

gdje je D konstanta proporcionalnosti

$$D=\frac{\rho CA}{2},$$

ho gustoća medija kroz koji se tijelo giba (u našem slučaju zrak)

$$\rho = 1.23 \, \rm kgm^{-3}$$

C koeficijent otpora za Subaru (http://en.wikipedia.org/wiki/Automobile_drag_coefficient)

$$C = 0.36$$
,

A udarna površina (poprečni presjek koji se "urezuje" kroz medij)

$$A \approx 3 \text{ m}^2$$
.

Rastavimo sve sile koje djeluju na tijelo (auto) na komponente kako bismo odredili komponente ukupne sile na tijelo i iskoristili 2. Newton-ov zakon za tijela konstantne mase

$$\vec{a}(t) = \frac{\vec{F}(t)}{m} \Leftrightarrow a_x = \frac{F_x}{m} \; ; \; a_y = \frac{F_y}{m} \; ; \; a_z = \frac{F_z}{m}$$

Komponente, koje su usmjerene suprotno osima odabranog koordinatnog sustava, negativne su. Sa slike zaključujemo

$$F_{x} = F_{0Zx} = -Dvv_{x}$$

$$F_{y} = F_{0Zy} - mg = -Dvv_{y} - mg$$
pa je
$$a_{x}(t) = -\frac{D}{m} \cdot v(t) \cdot v_{x}(t)$$

$$a_{y}(t) = -g - \frac{D}{m} \cdot v(t) \cdot v_{y}(t)$$

$$v(t) = \sqrt{v_{x,i}^{2} + v_{y,i}^{2}}$$

$$F_{0z} \cdot \vec{j}$$

$$F_{0z} \cdot \vec{j}$$

$$F_{0z} \cdot \vec{j}$$

$$F_{0z} \cdot \vec{j}$$

5. Sažetak jednadžbi

Kako bismo dobili što realističniju simulaciju, odaberemo dovoljno mali vremenski interval Δt na kojem se akceleracija ne mijenja ili se mijenja zanemarivo. Rješavamo sljedeće prethodno dobivene jednadžbe:

$$a_{x}(t) = -\frac{D}{m} \cdot v(t) \cdot v_{x}(t) \qquad a_{y}(t) = -g - \frac{D}{m} \cdot v(t) \cdot v_{y}(t) \qquad D = \frac{\rho CA}{2}$$
$$\frac{dv_{x}}{dt} = a_{x} \qquad \qquad \frac{dv_{y}}{dt} = a_{y} \qquad v(t) = \sqrt{v_{x}^{2}(t) + v_{y}^{2}(t)}$$
$$\frac{dx}{dt} = v_{x} \qquad \qquad \frac{dy}{dt} = v_{y}$$

6. Akumulacijske varijable

- Prvo dodajemo sve varijable za koje postoje vremenske derivacije u jednadžbama.
- 4 Dodajemo ih kao akumulacijske (box) varijable.

7. Brzine promjena

🖊 Zatim svakoj akumulacijskoj varijabli moramo dodati brzinu promjene.

8. Ostale pomoćne varijable i konstante

- Lodajemo redom preostale varijable koje se pojavljuju u jednadžbama, a nisu dodane prethodno
- Povežemo relacije sa strelicama (obično lijevo napisane u jednadžbi računamo iz desno upisanih pa tako i strelice najčešće idu iz lijevo upisanih obzirom na = u desno upisanu)

9. Unesemo konstante i jednadžbe za ostale varijable

- **4** Za svaki objekt moraju biti definirane i mjerne jedinice (Dmnl za bezdimenzionalne jedinice).
- Za akumulacijske varijabla moramo definirati i početne vrijednosti

$\mathbf{x}(0) = 0 \mathrm{\ m}$	y(0) = 0 m	$\mathbf{v}_{\mathbf{x}}(0) = v_0$	$cos \alpha$ $v_y(0) = a$	$v_0 \cdot \sin \alpha$
Editing equation for - ¥x				
Vx				
= INTEG "dVx/dt"				A •
Initia Vo*COS(alfa) Value				
Type Und	o 7 8 9 +	Variables Functions	More	
Level (0)] 4 5 6 -	Choose	Initial Variable	
v	1 2 3 *	Vx		
Supplementary	0 E . /	alfa dVx/dt		
Help	(), ^	Vo		
Units: m/Second				
Com- ment:				
Minimum Value	Maxim	um Value	Increment	
Errors: Equation Modifi	ed			~
OK Ch	eck Syntax	Check Model	Delete Variable	Cancel

4 Za ostale unosimo vrijednosti napisane u prethodnom dijelu.

10. Postavimo vremenske postavke i odaberemo metodu integracije

Model - > Settings

Model Settings - use Sketch to set initial causes					
Time Bounds Info/Pswd Sketch Units Equiv XLS Files Ref Modes					
Time Bounds for Model					
INITIAL TIME = 0					
FINAL TIME = 2.5					
TIME STEP = 0.01					
Save results every TIME STEP					
or use SAVEPER =					
Units for Time Second 💌					
Integration Type Euler					
NOTE: To change later use Model>Settings or edit the equations for the above parameters.					
OK Cancel					

11. Provjerimo model

- ✓ Model => Check Model
- ✓ Model => Units Check

Message from ¥ensim						
Units are A. O. K						
OK						

✓ Bug: upozorenje za box varijable da nije korištena pri definiciji iste

12. Pokretanje simulacije

- ✓ Pokrenemo simulaciju klikom na ikonu trkača ili zelenog trokuta, ovisno o verziji Vensima.
- ✓ Označimo X i Y te ih prikažemo grafički ili tablično radi preciznijeg čitanja vrijednosti.

- d 🕾 📋 🛛 🔳	able Time D)own		
Time (Second	Selected	х	Y	
2.06	Variables	78.5013	3.51101	
2.07	Runs:	78.8757	3.42681	
2.08	Current	79.2501	3.34163	
2.09		79.6244	3.2555	
2.1		79.9986	3.16839	
2.11		80.3728	3.08032	
2.12		80.747	2.99128	
2.13		81.121	2.90128	
2.14		81.495	2.81031	
2.15		81.8689	2.71838	
2.16		82.2428	2.62548	
2.17		82.6166	2.53161	
				•

- Domet (daljina koju je auto preskočilo) određujemo iz x vrijednosti u trenutku kada y postane 0, odnosno iz visine na kojoj je postavljena sletna staza.
- ✓ Priložena simulacija: 05 V8.mdl.

13. Određivanje nagiba staze

- ✓ Mijenjanjem vrijednosti kuta nagiba staze α možemo uočiti kako o njemu ovise ostale veličine pa tako i domet.
- ✓ Postavimo li $\alpha = 17^{\circ}$ možemo primijetiti da je domet x = 82 m za sletnu stazu koja se nalazi na visini oko 2.5 m.
- 4 Kako smo slučaj pojednostavnili, stvarne vrijednosti mogu malo odstupati od dobivenih.